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Information Retrieval

* What is Information Retrieval (IR)

Information
> need A Obama family tree
T /’,7
Relevance
(documents satisfy Retrieval
information need system indexes
e.g. useful) a document
corpus

Results (document list)

Relevance between text queries and documents



Information Retrieval

* Applications of Information Retrieval

 Document Ranking
* Query: Obama family tree

* Document:
* Family of Barack Obama - Wikipedia

e Barack Obama Family Tree along with family connections to other
famous kin. Genealogy charts for Barack Obama may include up to 30
generations of ...

* Question Answering
* Query: Who is Barack Obama's sister?
* Answer:

Maya Soetoro-Ng Auma Obama



Information Retrieval

* Applications of Information Retrieval

* The applications of IR can be divided into two categories:
* Document Ranking and Question Answering

_ Document Ranking Question Answering

Query Keywords Natural language question
Document Web page, news article A fact and supporting passage
Research solution = Traditional IR = Open Domain QA

= Neural IR = Generative QA

= Reading Comprehension
= Fact Verification

In products = Document rankers at: =  Microsoft Xiaoice
Google, Bing, Baidu... = Watson@Jeopardy
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Traditional IR Methods

* Language modeling approach of IR
* Given a query g and document d:

p(dlq) = p(qld)p(d)

* p(d) can be assumed uniform across docs
* p(qld) = [lweqp(Ww|d) depends on how to model the relationship of
query word and doc
* The language modeling approach is quite extensible
* TF-IDF; BM25 ...



Traditional IR Methods

» TF-IDF

* Term Frequency (TF)

* The weight of a term that occurs in a document is simply proportional
to the term frequency

* The number of times that term t occurs in document d:

ng

tf(t,D) = —

ng

* Where n, is the number of times the term t appears in d, and n, is the
word number of the document d



Traditional IR Methods

» TF-IDF

* Inverse Document Frequency (IDF)

* The specificity of a term can be quantified as an inverse function of the
number of documents in which term t appears

* |DF is a measure to evaluate if term t is common or rare across the
document collection D

N

IDF(t,D) = log {deD: ted)]

 Where N is the total number of documents in the corpus, and

|{d€D: ted}| denotes the number of documents where the term t
appears



Traditional IR Methods

» TF-IDF

* A high TF-IDF value of term t requires:
e High term frequency (TF) in the given document

* Low document frequency (IDF) of the term in the whole collection of
documents

TF — IDF(¢t, D) = TF(¢, D) - IDF(t, D)



Traditional IR Methods

* BM25

* BM25 is a bag-of-word retrieval model

* Given a query @, which contains n words q;, ...q, the BM25 score of a
document D is:

f(quD)-(k+1)

__|D]
f@D)+k-(1=b+b-og)

score(D, Q) = z IDF (q;) -
i=1

* Where f( q;, D) is the term frequency of g; in the document D, |D]| is the
length of D, and avgdl is the average document length in the document
collection

* BM25 aims to normalize term frequency according to document length
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Traditional IR Methods

* Sequential Dependence Model (SDM):
* Models term dependence for IR

* Provides a good balance between retrieval effectiveness and
efficiency

 The SDM score is calculated with:
* Unigram term frequency fr
* Bigram term frequency f, (with order) and f;; (unorder)

plald) = A Zys , fr(t]d)
+ /10 Zté,tcil'l‘leq fO (tl ) t(i]+1 |d)
+ /lU Ztciptgl-l-leq fU (tl 4 tCi[+1 |d)

* Where/‘lT+/10+AU= 1

D. Metzler and W. B. Croft, A Markov Random Field model for term dependencies. SIGIR 2015
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Traditional IR Methods

* Traditional IR methods

* Pros
* Have ability to deal with large scale data
* Do not need annotated labels

* Cons

* Have vocabulary mismatch problem
e Perform shallow understanding for queries and documents

12



* Traditional IR methods

* Vocabulary mismatch

Traditional IR Methods

* Q: How many people live in Sydney?

» Sydney’s population is 4.9 million
[relevant, but missing ‘people’ and ‘live’]

» Hundreds of people queueing for live music in Sydney
[irrelevant, and matching ‘people’ and ‘live’]

e Perform shallow understanding for queries and documents

e Query: Albuguerque

is the most populous city in the US. state of
New Mexico. The high-altitude city serves as the county seat
of Bernalillo County, and it is situated in the central part of
the state, straddling the Rio Gronde. The city population s
557,169 as of the July 1, 2014, population estimate from the
United States Census Bureau, and ranks as the 32nd-largest
city in the US. The Metropolitan Statistical Area (or MSA) has
a population of 902,797 according to the United Stotes
Census Bureau's most recently available estimate for July 1
2013

Passage about Albuquerque

Allen suggested that they could program a BASIC interpreter
for the device; after a coll from Gates claiming to have a
working interpreter, MITS requested a demonstration. Since
they didn't actually have one, Allen worked on a simulator
for the Altair while Gates developed the interpreter. Although
they developed the interpreter on a simulator and not the
actuol device, the interpreter worked flowlessly when they
demonstrated the interpreter to MITS in New
Mexico in March 1975; MITS agreed to distribute it
marketing it as Altair BASIC

Passage not about Albuquerque
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Neural Models for IR

 Why choose neural models
* Neural models outperform traditional IR models significantly
* Being neural has become a tendency for IR
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(a) Document retrieval task



 Why choose neural models
* Deeper model has stronger ability to fit data

FEATURES
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properties do
you want to
feed in?

+

Neural Models for IR
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Neural Models for IR

* Given a query g and a document d
* We can use a neural network to get relevance score f(q, d)

* Then train and optimize the neural model
* Pairwise training
* Pointwise training

Query text . -

< - g Relevance Score
d

f(q,d)

Document text e ’

neural network

17



Neural Models for IR

* Given a query g and a document d
* We can use a neural network to get relevance score f(q, d)

* Then train and optimize the neural model
* Pointwise training

* L=|ly—f(gdll?*
* L = CrossEntropy(f(q,d),y)

* Pairwise training

© L=¢(f(q.dy) ~ f(g,d))
* Hinge function ¢ (z) = max(0,1 — z)

* Exponential function ¢p(z) = e™*

* Logistic function ¢p(z) = log(1 + e™?)
of(@dy)
ef(ad+) 4ef(qd-)

* L =-log(

18
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Representation-based IR Models

* Representation-based IR models

* Use neural networks to generate query and document
representations

* Then estimate the relevance of the query and document

Generate query Query

Query text .
representation vector

q

Relevance Score

Generate

Document
Document text document . f(q; d)

vector

representation

d

20



Representation-based IR Models

* ARC-I
 Stacked layers of convolution and max-pooling
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Hu et al. Convolutional Neural Network Architectures for Matching Natural Language Sentences. 2014
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Representation-based IR Models

* Deep Semantic Similarity Model (DSSM)
* Input: Character trigram counts after word hashing

* Query and document relevance is estimated by the cosine
similarity of their representations

Posterior probability
computed by softmax

P(D,|Q) P(D|Q) P(D,|0)

Relevance measured
by cosine similarity

Semantic feature y
I3
Multi-layer non- _|
linear projection I
Word Hashing L [/,
Term Vector X |

Huang et al. Learning Deep Structured Semantic Models for Web Search using Clickthrough Data. CIKM 2013. 22



Representation-based IR Models

* Deep Semantic Similarity Model (DSSM)
* Word hashing

* The word hashing method aims to reduce the dimension of the word
representation
e Given a word
e good
 Add a mark (#) to the start and end of the word
e Hgood#
* Break the word into letter n-grams
* trigrams: #go, goo, ood, od#
* Represent the word using a vector of letter n-grams

BN JoI I Jolelel )

#go nd# ood g00

Huang et al. Learning Deep Structured Semantic Models for Web Search using Clickthrough Data. CIKM 2013.
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Representation-based IR Models

e Convolutional Latent Semantic Model (CLSM)

* A convolutional layer extract contextual features for each word
with its neighboring words

e Capture context information for queries and docs

* Word-n-grams obtained by running a sliding window over an input
sequence

* Get the representation of each composition through word-hashing

Query/document <s>

Sliding window

Word-n-gram layer

<s> online auto online auto body [N

Wr
Letter-trigram layer [ || ||| 90K | [ 9ok | -
Convolution matrix W, J

Convolutional layer h,

([[[300 |~{[[{300 |

Max-pooling

Take max at each

| | 300 I dimension across

Max-pooling layer v

all word-trigram
Semantic matrix W ,L features
Semantic layer y @

Huang et al. Learning Deep Structured Semantic Models for Web Search using Clickthrough Data. CIKM 2013. 24



Representation-based IR Models

hqy = W4BERTg(g)[CLS]
hy = WbBERTB(b)[CLS]

Retriever score: Sre(b,q) | swa-nn

All of Wikipedia: select top K

Question g -

What does the Zip Each evidence block b ‘.‘.':.:".',:. MM NI ‘_
in zip code stand for? »Eﬂdmg@m%hi#gmcbloﬂ) -y
BERT,, BERT}
[©0000000]W, [0CO000000]W, |HvidenceBlock4s,
hq \ /hb
S . (b,q)=hlh
retr\*» q q b

Karpukhin et al., Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020.
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Interaction-based IR Models

* Interaction-based IR models

e Establish an interaction matrix M
* M, is obtained by comparing the i*" word in query and the j* word in
doc
* For example, M;; = cos(ﬁti,ﬁtj)
* Employ neural networks to extract features and get the
ranking score

document
YOOO000)

H_J
o ©
Ol i Q0000 .
q Nelericosc I |
18l IBeces0os— %} »—> Relevance Score
O/ ©]0/0/0]0)0/0]0) .. ’
O 0]0]00]0]0]0e) neural network
Document text O] IBOOOOOO0) f(CI; d)
interaction matrix
d

Kenter et al., Neural Networks for Information Retrieval. WSDM 2018. 27



Interaction-based IR Models

* ARC-II

* Takes the sliding window on the sentence, and model all word-

n-grams through the one-dimensional convolution

 Obtains an interaction matrix between two sentences
(Concatenation word-n-gram representations)

e Obtains a high level representation through the two-
dimensional convolution

sentence Sy

1D luti more 2D convolution
convolution .

max-pooling & pooling
I_'_l

sentence S,
I_l_l
|
\
N
!

2D convolution

Layer-1 (1D convolution) Layer-2 (2D-pooling) Layer-3 (2D-convolution)

Hu et al., Convolutional Neural Network Architectures for Matching Natural Language Sentences. 2014.
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Interaction-based IR Models

* MatchPyramid

* MatchPyramid has three parts:
* |nteraction matrix
* Hierarchical convolution (N convolutional layers)
* Matching score aggregation (IVILP)

T

e R S
. OOO0000@O :2 i :_ More 2D-Convoluton )
T, v: 88%88880 - and Pooling O Q O . Mg:;,h,:'g
vs OO0 "H] e n £ T vttt O O
JOe] 0000 1 [ S
nORRRSS 3o/0/00! lolee UHHHH | =
wQQOO O
1 ] 1 ] ]
Layer-0 Matching Matrix Layer-1 2D-Convolution Layer-2 2D-Pooling Layer-n MLP

Pang et al., A Study of MatchPyramid Models on Ad-hoc Retrieval. SIGIR 2016. 29



Interaction-based IR Models

* MatchPyramid

* Employs a CNN over the interaction between queries and docs

to produce the matching score
* CNN in image recognition often focus on the edge of the object

Ty

v2 OOOOO.OO \ input !caturcc: maps rea:ursé maps "
V3 8%988880 \ Rx32  28x28 N
NS5 sssoml

JO0. (00000

KOO0 000

QOO0 O \\
l ,

Layer-0 Matching Matrix feature extraction classification

Pang et al., A Study of MatchPyramid Models on Ad-hoc Retrieval. SIGIR 2016.
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Interaction-based IR Models

e Similarity Functions in MatchPyramid:

* Indicator Function produces either 1 or 0 to indicate whether
two words are identical

* Cosine views the angle between two word vectors as the
similarity

* Dot Product further considers the norm of word vectors, as
compared to the cosine

e Gaussian Kernel is a well-known similarity function

Model MAP nDCG@20
MP-Ind  0.225 0.387
MP-Dot  0.095  0.149
MP-Cos 0.189  0.340
MP-Gau 0.226 0.403

Pang et al., A Study of MatchPyramid Models on Ad-hoc Retrieval. SIGIR 2016. 31



Interaction-based IR Models

* Deep Relevance Matching Model (DRMM)

Matching Score
Score Aggregation Q
B Q Q Q Bi| By Bs
600 ooo 000 |
Feed Forward Term Gating

Matching Network QQ\)QJQ QQ\ /Q«Q QQ\ IQQ L Network |
| SEE-dby GG -ton 65 - bob

1 Inl e wn. wnn Ll
.

Matching Histogram

Mapping N N
® @ @
Local Interaction g
Q00 600 ~ -~ 000
q d

Guo et al., A Deep Relevance Matching Model for Ad-hoc Retrieval. CIKM 2016.



Interaction-based IR Models

* Deep Relevance Matching Model (DRMM)
* Matching histogram mapping

H¢ H$ HY H HE HE HY HY

Hil 0.18 | 0.22 | 0.19 | 0.23 | 0.21 | 0.82 | 0.78 | 0.19

|
x

[-1,-0.5) [-0.5,-0) [0,0.5) [0.5,1) [1, 1]

4

(0,0,6,2,0)

Guo et al., A Deep Relevance Matching Model for Ad-hoc Retrieval. CIKM 2016.



Interaction-based IR Models

» Kernel-based Neural Ranking Model (K-NRM)

* Learning embedding tailored for relevance ranking
* End-to-end training from user feedback (User click signal)
» Soft-matching at word level

Query Translation Matrix Kernels Soft-TF Ranking
(n words) My m Features

t; -E_\ N Final
EETEE ¥ awm) K Rankin
ARl 300 ;\‘—.-,,,- \—i . @ g

““““ -~ Score

Embedding  Translation Kernel Learning-To-Rank
Layer Layer Pooling

Xiong et al., End-to-End Neural Ad-hoc Ranking with Kernel Pooling. SIGIR 2017. 34



Interaction-based IR Models

» Kernel-based Neural Ranking Model (K-NRM)

* Embedding layer maps each word to an L-dimension vector
* Then K-NRM constructs an interaction matrix M

e Kernel-Pooling converts word-word interactions to the query-
document ranking feature

* Learning-to-Rank (LeToR) combines the ranking feature to
produce the final ranking score

Xiong et al., End-to-End Neural Ad-hoc Ranking with Kernel Pooling. SIGIR 2017.
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Interaction-based IR Models

» Kernel-based Neural Ranking Model (K-NRM)

» Radial Basis Function (RBF) Kernel:

(M — p)?
20}

Ky (M;) = Z exp(—

J

)

* Where K}, is the k-th kernel, p, is the mean of kernel k, o defines the
kernel width, and M is the interaction matrix

K1 K2 K3
OQ\A_

Word Pair Similarity

Xiong et al., End-to-End Neural Ad-hoc Ranking with Kernel Pooling. SIGIR 2017.
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Interaction-based IR Models

e Kernel-Pooling in K-NRM
* Soft-TF

* Uses kernels to softly count the frequencies of word pairs at different
similarity levels

e Counts soft-match pairs at multiple similarity levels using Kernels

gradlent ¢(M) = 2 lOgK(M )

d&:)) - E w (1(1\, (M)))
K1 K2 K3
O&L ROM) = (K (M), o, K (M)
S ® gradie
Word Pair Similarity 9(Myj) Word Pa|r S|m|Iar|ty
(a) Ranking (b) Learning

Xiong et al., End-to-End Neural Ad-hoc Ranking with Kernel Pooling. SIGIR 2017.
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Interaction-based IR Models

» Kernel-based Neural Ranking Model (K-NRM)

* Examples of word pairs:

e During training, K-NRM adjusts word embeddings to produce soft
matches that can better separate relevant and irrelevant docs

From To Word Pairs

u=0.9 pu = 0.1 | (wife, husband), (son, daughter),
(0.20, —) | (0.23, —) | (China-Unicom, China-Mobile)

u=0.5 u = 0.1 | (Maserati, car),(first, time)

(0.26, —) | (0.23, —) | (website, homepage)

p=0.1|p=-0.3 | (MH370, search), (pdf, reader)
(0.23, =) | (030, +) | (192.168.0.1, router)

u=0.1 p=0.3 | (BMW, contact-us),

(0.23, ) | (0.26, —) | (Win7, Ghost-XP)

pu=051pu=-0.3| (MH370, truth), (cloud, share)
(0.26, =) | (0.30, +) | (HongKong, horse-racing)
p=-0.3 u=0.5 | (oppor9, OPPOR), (6080, 6080YY),
(0.30, +) | (0.26, ) | (10086, www.10086.com)

Values in parenthesis are MRR of the
individual kernel, indicating the
importance of the kernel.

‘+’ means word pair appearances in the
corresponding kernel are positively
correlated with relevance; ‘-’ means
negatively correlated.

Xiong et al., End-to-End Neural Ad-hoc Ranking with Kernel Pooling. SIGIR 2017.
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Interaction-based IR Models

e Conv-KNRM

* Queries and docs often match at n-gram level
* For example:
* Query: “Convolutional Neural Networks”
* Doc: “Deep Learning Tutorial for beginners...”
* Traditional IR approach: exact match n-grams

* Interaction-based Neural IR models
- Capture soft match using word embeddings

Dai et al., Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search. WSDM 2018.
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Interaction-based IR Models

e Conv-KNRM

* Convolutional layer
* Applys convolution layers to compose n-grams from the text
* Cross-Match Layer

* Builds similarity matrices between n-grams
* Query unigrams to document unigrams
e Query unigrams to document bigrams

Query bigrams to document unigrams
Query bigrams to document bigrams

Dai et al., Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search. WSDM 2018.
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Interaction-based IR Models

* Conv-KNRM

* Ranking with N-gram Translations:
* Kernel-Pooling

e Using K Gaussian kernels to extract features of word n-gram pairs
* Learning-to-Rank (LeToR):
e Combining soft-TF ranking features into a ranking score

. CNN' |
Query  Tq g Gl 7 Kernel :
Tq Gh=1dn*=1 )
hamlet (o l =L unigrams) M Pooling | ..
best| ¥51 67 93 @
lines 05,08 ' gi . Final
1 | @2 i Rankin
CNN2! 41 | Gy qu=1.dh=2 o> Kernel Q:. Scoreg
| gi Pooling .
 CNN'[—; ' '@
Document Ty g Gl
. ' — - Kernel
. Gh=2dp=1 |
W (s J «. |(unigrams) M Pooling
be 155 o1 g
or 01,05 [Tz | i
1 | | @ | '@ LeToR
not | 02,.,05 ] . G2 Mqh=2.dh=2 o Kem.EI »
| | ( Pooling o
CNN*+—5
Y4
Word Embedding Convolutional Layer Cross-match Layer Soft-TF Features

Dai et al., Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search. WSDM 2018.
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Interaction-based IR Models

* BERT

 Stacked transformer layers
* BERT is pretrained on two tasks

* Masked language modeling
* Next sentence prediction

,"//NS-P Mask LM Mask LM i \A\\l '/ﬁ/NU',/“/ER /{QUAD StarvEnd Span
g S * R 2 & 2
ClE)- Gl=)r]- ] )~ lne)r)- ()
b ofs 00 0o .
el e 60 475 0 d .
BERT 3 SRR R N CICRCH ) OO BERT
[oaf & o [& )] B[ & ] (&) en & [ [& ][ el & |- [&]
-t (8 r O o ——0 i & O e
(efm] - [ed[en](m - [ ) - EO=E - G
Masked Sentence A Masked Sentence B J \ .\ \ Question -« Paragraph /
.\-\\ Unlabeled Sentence A and B Pair / ‘\\\_\\\ \‘~\‘ Question Answer Pair o
Pre-training Fine-Tuning

Devlin, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NACCL 2019. 42



Interaction-based IR Models

e BERT ranker

* Given a query q and a document d.
* Three kinds of representations are calculated

* [CLS] representation h(CLS)
* Query representation H(q)
* Document representation H(d)

h(CLS) H(q) H(d)
N /S N o N /7 Vs ~ N\ £ s !

Input my || dog || is [cute (ser) il he (ukes ]( play \ mng] [SEP)
Token |
Embeddings Emy Edcq Evs Eune El‘.’-E"l Efe Ehkes Eolnv J E"'"Q E-’;SE"

-+ + + + + + + +* - +
Segment
Embeddings EA EA EA EA EA EB EB EB EB EB

+ + + + + -+ + + -+ +
Position ‘
Embeddings 1 [ & JL B || Ba || & W G || || B || B || Eio

Qiao et al. Understanding the Behaviors of BERT in Ranking. 2019.



Interaction-based IR Models

e BERT ranker

* Given a query g and a document d

* The relevance score f(q, d) can be calculated:
* f(q,d) = MLP(h(CLS)) with [CLS] representation

* Orf(q,d) = MLP(¢p(H(q),H(d))) with query and document
representations. ¢ can be interaction-based architectures

h(CLS) H(q) H(d)

” N N A N /7 £ N\ N £ r'a N
input tam] my || dog is fcute} (ser] Il he fukes]( play mng“ [SEP)
Token ] ] |
Embeddings EKXS] Emv Edr.q E's Eune Ei‘.’-E"l Er? Elrkes Eolnv | E“mg L E(;SE"

+ + + + + + + + +* - +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + + + +
Position
Embeddings L E_O-, E_l,. EZ,_. E_3 _E.4,,. ’ E.,S, EG E7 I L Eﬁ. 1L E?. : E.,LO

Qiao et al. Understanding the Behaviors of BERT in Ranking. 2019.
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Summary of Neu-IR Models

* Neural IR models

* Can be divided into representation-based and interaction-
based categories

* Neural IR models can deal with vocabulary mismatch problem
with word embeddings

* Neural IR models help better understand natural language
with sophisticated neural architectures

* There are also some challenges in neural IR area, such as data
challenge
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Neural Models in IR Systems

* IR Pipeline
* Document Retrieval
* Retrieval documents from large scale document collection (Efficiency)
* Need to recall more relevant documents
* Document Reranking
* Reranking documents from retrieved candidates (Effectiveness)
* Need to provide more precision ranking results

Document Reranking:

- 1. Neural Rankers
2. Pre-trained Models

Document Retrieval:
1. Sparse Methods

3. SparsexDense Top-K Documents
' )

\
T

Relevant Documents
Ranking Feature Ensemble

2. Dense Methods
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Neural Models in IR Systems

* IR Pipeline
e Document Retrieval

e Sparse Models
* Traditional IR models, such as BM25, SDM and TF-IDF

* Dense Models
* Representation based IR models, such as DPR and ANCE

* Document Reranking

* Neural Reranking Models
* Conv-KNRM, KNRM, TK
* BERT
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Neural Models in IR Systems

* IR Pipeline
e Document Retrieval

e Sparse Models
* Traditional IR models, such as BM25, SDM and TF-IDF

* Dense Models
* Representation based IR models, such as DPR and ANCE

* Document Reranking
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Neural Models in IR Systems

* Improve Sparse Retrieval Models with Term Weighting

* For the query Chinese river, word embedding gives several
neighbors
* The neighbor phrases are semantically related to the input
* Weight query terms with averaged embeddings

Query: Chinese river Word Cosine similarity
Yangtze_River 0.667376
Yangtze 0.644091
Qiantang_River 0.632979

Yangtze_tributary 0.623527
Xiangjiang_River  0.615482

Huangpu_River 0.604726
Hanjiang_River 0.598110
Yangtze_river 0.597621
Hongze_Lake 0.594108
Yangtse 0.593442

Zheng and Callan, Learning to reweight terms with distributed representations. SIGIR 2015
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Neural Models in IR Systems

* Improve Sparse Retrieval Models with Term Weighting
* Pre-trained word embedding

We calculate |5c’tq| to measure the semantic

6 1_])t
y distance of a term to the whole query:
N I
tg — Ytg T Uyl
35 . // q q |q| 4 q
Al Sob tq€
VR )
oo Where ﬁtq is the embedding of term t, and ¢
LI T R R R R A B is the word from query other than ¢,

Zheng and Callan, Learning to reweight terms with distributed representations. SIGIR 2015 52



Neural Models in IR Systems

* Improve Sparse Retrieval Models with Term Weighting
* Deep Contextualized Term Weighting (DeepCT)

* Using BERT to predict term weight
* Document Term Weight Prediction
* QTR q = |Qarl/1Qul
* |Q4| denotes the number of queries that related with d

* |Qq4¢| denotes the number of queries that related with d and contain
termt

* Query Term Weight Prediction
* TRt,q = |th|/|Qq|
* |Qq| denotes the number of documents that related with g

. |Qq,t| denotes the number of documents that related with g and contain
termt

Dai and Callan Context-Aware Sentence/Passage Term Importance Estimation For First Stage Retrieval. SIGIR 2020.
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Neural Models in IR Systems

* Improve Sparse Retrieval Models with Term Weighting
* Deep Contextualized Term Weighting (DeepCT)

Query do atoms make up dna
DNA only has 5 different atoms - carbon, hydrogen,

On- oxygen, nitrogen and phosphorous. According to one
Topic  estimation, there are about 204 billion atoms in each DNA.

Genomics in Theory and Practice. What is Genomics.

Genomics is a study of the genomes of organisms. It main
Oft- task is to determine the entire sequence of DNA or the
Topic  composition of the atoms that make up the DNA and the
chemical bonds between the DNA atoms.

Dai and Callan Context-Aware Sentence/Passage Term Importance Estimation For First Stage Retrieval. SIGIR 2020.
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Neural Models in IR Systems

* IR Pipeline
e Document Retrieval

e Sparse Models
* Traditional IR models, such as BM25, SDM and TF-IDF

* Dense Models
* Representation based IR models, such as DPR and ANCE

* Document Reranking

* Neural Reranking Models (Usually Representation based IR models)
* Conv-KNRM, KNRM, TK
* BERT
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Neural Models in IR Systems

 Dense Retrieval Models

hgy = W4BERTg(g)[CLS]
hy = biERTB(b)[CLS]

Retriever score: Srew(b,q) | swt.o-nn

All of Wikipedia: select top K

Question g . I
What does the zip Each evidence block b w"', S ——— '
in zip code stand for? ﬁudqgggﬂ%&;ﬁm,ﬂ(kpg) 1 FAISS .. .
1 l e _[ Local Sensitive Hash Indexing
Build index for a collection:
Y1, Y2, s Yn € RY
BERT, BERT, \ ” H H [

| | =PIl |

[000060000]W, [0o600000]W, o 2

T .=

! ! S5
h hb > é z e R4

|

|

N

Sretr(b’ q) = h;.hb Result: k- argmin,., Iz - vl

(FAISS) Johnson et al - 2017 - Billion-scale similarity search with GPUs
https://github.com/dangi/acl2020-openqga-tutorial/blob/master/slides/part5-dense-retriever-e2e-training.pdf



Neural Models in IR Systems

* Dense Passage Retrieval (DPR)

 How to Train DPR?
* Contrastive Training

Question g Passage p

p— o + T « o o - m
} | D = {{(4ip; VZRE 7pi,n> i=1
BERT BERT p
' : L(g; R )
[00000000] [00000000] 9, D; »Pj 1> yDin
! \ 5im(ai )
" " = —log
: . : . o
\ / eslm(qz,pi ) + 2?21 eSlm(q”pm)
sim(q,p) = h;- h,

Karpukhin et al., Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020.



Neural Models in IR Systems

* Dense Passage Retrieval (DPR)

* Positives

* Provided in the reading comprehension datasets

* Passages of high BM25 scores that contain the answer string
* Negatives

* Random negatives: Random passages from the corpus

* BM25 negatives: Passages of high BM25 scores that DO NOT contain
the answer string

* In-batch negatives: Positive passages of OTHER questions

r ________ .
Npasgaqes | Retrlever : passage rep (N x 128) retriever scores

p ! [ Passage | ' LTI 11t - r--(!y-f(--l-\!-)---- |
j —L 1, ' —> loss
S | Encoder @ L \_ 1> loss
I I . matmul —> loss
Nauesions [ Question | + QUestonrep (V< 128) 7 [T o
Encod L
o ——— neoger P

A

Karpukhin et al., Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020. 58



* ANCE
* ANCE provides efficient encoding methods

* Asynchronously updated ANN index
 Warm up with BM25 negatives
* Training is not stable

* Train with ANCE retrieved documents

* To avoid Diminishing Gradients

Inferencing
Inferencer = = = = = = - P—pt - -- ‘.‘_J. o - p—
v A
|

Q':é:aEtives Dy, Dpis Dp_, Dj,

Training

Positives
Il C ) C )

Index &
Search

Neural Models in IR Systems

Index &
Search

Checkpoint k-1

Checkpoint k

Checkpoint k+1

Xiong et al., Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval. ICLR 2021.
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Neural Models in IR Systems

MARCO Dev TREC DL Passage | TREC DL Document
Passage Retrieval NDCG@10 NDCG@10
MRR@10 Recall@lk | Rerank Retrieval | Rerank Retrieval
Sparse & Cascade IR
BM25 0.240 0.814 - 0.506 - 0.519
Best DeepCT 0.243 n.a. - n.a. - 0.554
Best TREC Trad Retrieval 0.240 n.a. - 0.554 - 0.549
BERT Reranker - - 0.742 - 0.646 -
Dense Retrieval
Rand Neg 0.261 0.949 0.605 0.552 0.615 0.543
NCE Neg 0.256 0.943 0.602 0.539 0.618 0.542
BM25 Neg 0.299 0.928 0.664 0.591 0.626 0.529
DPR (BM25 + Rand Neg) 0.311 0.952 0.653 0.600 0.629 0.557
BM25 — Rand 0.280 0.948 0.609 0.576 0.637 0.566
BM25 — NCE Neg 0.279 0.942 0.608 0.571 0.638 0.564
BM25 — BM25 + Rand 0.306 0.939 0.648 0.591 0.626 0.540
ANCE (FirstP) 0.330 0.959 0.677 0.648 0.641 0.615
ANCE (MaxP) - - - - 0.671 0.628

Karpukhin et al., Dense Passage Retrieval for Open-Domain Question Answering. EMNLP 2020.



Neural Models in IR Systems

* Dense Retrieval Application

e Retrieval-Augmented Generation (RAG)
* For “knowledge-intensive” tasks
* Initialized from DPR, fix document representations
* Seg2seq generator: BART
* Joint training: supervised with (x, y) pairs

befine Mmiddle eart(x) € - e e e e e e e, ... .- ---—-—-——-- The middle ear includes
End-to-End Backprop through q and pe G (EVATEEIbE GETNY 0
Question Answering: the three ossicles. (y)
Quetion Query Query Retriever p, Document YGenerator pg\ Question Answering:
Encoder (Non-Parametric) Index (Parametric)
Barack Obama was d(z) supports (y)
born in Hawaii. (x) q(x) 24
Fact Verification: Fact Que -y 3 Margin- Fact Verification:
v . :’ Z > |'g Label Generation
The Divs “f:{ 2 ; alize
Corened;vi::()e — MIPS‘: ==V \/\21 N ’?‘hizl 1é‘l1c:lhdc<.antur§ work
*_ is divided into
Jeopardy Question > sections: "Inferno",
Generation: >» "Purgatorio" &
Answer Query ~ ” "Paradiso" (y)
\ + A ) Question Generation
"

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, NamanGoyal, Heinrich Kiittler, Mike Lewis, We
tau Yih, Tim Rocktaschel, Sebastian Riedel, DouweKiela: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.

NeurIPS2020 61



* Dense Retrieval Application
* REALM

* Retrieve and predict
* Knowledge Retriever
* Knowledge-Augmented Encoder

Guu et al. REALM: Retrieval-Augmented Language Model Pre-Training. 2020.

Neural Models in IR Systems

7 Unlabeled text, from pre-training corpus (X') -,
E The [MASK] at the top of the pyramid (z) i

Ueiel retrieve
knowledge |----- {Neural Knowledge Retriever ~ p9(2|£1))]
corpus (Z) l

i Retrieved document--»-----»------------1
| The pyramidion on top allows for less .
material higher up the pyramid. (Z) ]

- Query and document-—t----oo-ooooooo - 5
! [CLS] The [MASK] at the top of the pyramid !
i [SEP] The pyramidion on top allows for less |

material higher up the pyramid. (x,z) E

[Knowledge—Augmented Encoder ~ py(y|z, z)]

-~ Answer —--=------------ :
i [MASK] = pyramidion (y) !

End-to-end backpropagation
_._._._._._._._._._._._._._._._._._._._)
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Outline

* Introduction to IR

* Traditional IR Models

* Neural IR Models

* Neural Models in IR Systems
e Challenges in Neural IR

* Summary
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Previous work in 2017-2019

Soft-TF with Kernel-Pooling

« KNRM [SIGIR 2017]
N-gram Soft Match with CNN
* Conv-KNRM [WSDM 2018]
Knowledge Memories

« EDRM [ACL 2018]

The Key:
* E2E relevance learned embeddings

From

To

Challenges in Neural IR

Effective with Search Logs
» Effective adaptation to ClueWeb
[WSDM 2018]

ClueWeb09 (NDCG@20 )

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

N $ N\ @

S \g/,\o @Q‘ @\Q
& S
& S
&
(JO
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Challenges in Neural IR

e BERT Reranker

* Compared to Conv-KNRM, BERT mainly improves ranking
performance on the question answering task

* BERT performs better on natural language understanding than
keyword matching

MS MARCO Passage Ranking ClueWeb09-B Ad hoc Ranking
Method MRR@10 (Dev) | MRR@ 10 (Eval) NDCG @20 ERR@ 20
Base 0.1762 -9.45% | 0.1649 +13.44% | 0.2496° -6.89% | 0.1387 -14.25%
LeToR 0.1946 - 0.1905 - 0.2681 - 0.1617 -
K-NRM 0.2100" +7.92% | 0.1982  +4.04% | 0.1590 ~40.68% | 0.1160 ~28.26%
Conv-KNRM 0.24747%%  427.15% | 0.2472  +29.76% | 0.2118} ~20.98% | 0.1443% ~10.78%
Conv-KNRM (Bing) | n.a. n.a. n.a. na. 0.28721 75T 47.12% | 0.1814 7°T  +12.18%
BERT (Rep) 0.0432 ~77.79% | 0.0153 =91.97% | 0.1479 ~44.82% | 0.1066 ~34.05%
BERT (Last-Int) 0.336781 473.03% | 03590 +88.45% | 0.2407%1  —10.22% | 0.1649™8  42.00%
BERT (Mult-Int) 03060 8 457967 | 03287  +72.55% | 024071 ~1023% | 01676181 43647
BERT (Term-Trans) | 0.3310"%1  470.10% | 0.3561 +86.93% | 0.2339%1 -12.76% | 0.1663 1 +2.81%

Qiao et al. Understanding the Behaviors of BERT in Ranking. 2019. 65



Challenges in Neural IR

e Using Pre-trained Models

* BERT learns an Anisotropic Embedding Space
* Word Frequency Biases the Embedding Space
* Low-Frequency Words Disperse Sparsely

Dataset STS-B SICK-R  STS-12 STS-13 STS-14  STS-15  STS-16

Published in (Reimers and Gurevych, 2019)
Avg. GloVe embeddings 58.02 53.76 55.14 70.66 59.73 68.25 63.66
Avg. BERT embeddings 46.35 58.40 38.78 57.98 57.98 63.15 61.06
BERT CLS-vector 16.50 42.63 20.16 30.01 20.09 36.88 38.03

Our Implementation
BERT ¢ 47.29 58.21 49.07 55.92 54.75 62.75 65.19

Li et al. On the Sentence Embeddings from Pre-trained Language Models. EMNLP 2020.



Challenges in Neural IR

* Using Pre-trained Models

tokyo travel
Seattle travel | USA - Lonely Planet
Not this: https://www.lonelyplanet.com/usa/seattle ~

Seattle KV
Tokyo travel | Japan - Lonely Planet
v https://www.lonelyplanet.com/japan/tokyo ~

T

Explore [MASK] holidays and discover the best time to visit.

©
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Challenges in Neural IR

* How to better train neural IR models in IR?
e Better Pretraining methods
* Using large scale relevance labels
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Challenges in Neural IR

* How to better train neural IR models in IR?
e Better Pretraining methods
* Using large scale relevance labels

69



* Better Pretraining methods
* Train BERT encoder with autoencoding
e The decoder modules uses a shallow neural network

Challenges in Neural IR

Reconstruction Loss Rerank Retrieval
X1 X X3 Xz Xg Model MRR@10 | MRR@10 Recall@1k
d ¢ & % & atention BM25 (Craswell et al., 2020) - 0.240 0.814
: ! Span Auxiliary Best DeepCT (Dai & Callan, 2019) - 0.243 n.a.
i Restriction Decoder Best TREC Trad IR (Craswell et al., 2020) - 0.240 n.a.
TS e e e e e DPR (RoBERTa) (Karpukhin et al., 2020) . 0.311 0.952

F X, X Xz Xa X (3 layers) With Siamese (BM25 Neg)
T BERT (Devlin et al., 2018) 0.317 0.310 0.929
.............. e 06 o6 o o ® ELECTRA (Clark et al., 2020) 0.300 0.258 0.876
Bottleneck 'Transformer Layer | ERNIE2.0 (Sun et al., 2020) 0.324 0.320 0.934
RoBERTa (Liu et al., 2019) - 0.299 0.928
-2 2 % RoBERTa (Ours) 0.326 0.320 0.933
>— SEED-Encoder SEED-Encoder 0.329° 0.329° 0.953"
P Py e o PS ® (12 layers) ]\{’Vlth ANCE.(FlrstP)

oBERTa (Liu et al., 2019) - 0.330 0.959
RoBERTa (Ours) 0.327 0.332 0.952
e o o o o o SEED-Encoder 0.334 0.339' 0.961

CLS Xy Xy X3 Xy Xsg

Table 2. First stage retrieval results on MS MARCO Passage rank-
ing Dev set. Rerank MRR is for reference only. Statistically
significant improvements over ROBERTa (Ours) are marked by f.

Lu et al. Less is More: Pre-training a Strong Siamese Encoder Using a Weak Decoder. 2021.



* Better Pretraining methods
* COCO-LM

Corrective Language Modeling

; CAaJCB JCc JCp JCF — (s A J(B JLc JLbp JLE)
: COCO-LM Pretraining Tasks: . S S . ;"n:,'i’;g‘ ; t
Corrective Language Modeling (CLM) 5 _ Main Transformer
: Sequence Contrastive Learning (SCL) Auxiliary Transformer ; Seq”e’zzzri‘;:;as“"e
: - | it F "F %
----------------------------------- } } 3 Lo | _Iput

(A Jask])( ¢ J( D J(Mask] Ha)le)lc)pl)F]

Original Sequence: ABCDE

f Input

Main Transformer

1 f f 1
~(B J_c J( D J(rrap1)(tpap]]

Meng et al. Pretrain Language Models by Correcting and Contrasting Text Sequences. 2021.
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Challenges in Neural IR

* How to better train neural IR models in IR?
e Better Pretraining methods
* Using large scale relevance labels
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Challenges in Neural IR

* Neural IR models are fully supervised
* Traditional IR uses human labels as ground truth for evaluation

* So ideally we want to train our ranking models on human
labels

e User interaction data from industry is usually not available for
most people and may contain different biases compared to
human annotated labels

machine learning

Machine Learning

achord Uersty

user interaction / click data human annotated labels
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Challenges in Neural IR

* Anchor texts are similar to query texts

* Anchor-document relations are approximate to the
relevance between query and document

<a href=https://en.wikipedia.org/wiki/New York City Transit Police>
New York City Transit Police</a>

The New York City Transit
Police Department was a law
enforcement agency in New York
City that existed from 1953 to
1995, and is currently part of the
NYPD. The roots of this
organization go back to 1936
when Mayor Fiorello H. La
Guardia authorized the hirinc

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020.
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Challenges in Neural IR

* Anchor-document data could be very noisy, and the
noise data may hurt performance of neural IR methods

What Anchor Text Should You Use?

Bravp/URL
Ravcom Keworrs NGNS
(\ TARGET KEWORDS .

10152 507
click Lere 25402 your-webSHLe.COM
more inforniation

L cJ WA youvrwebsite.com
70&/(‘ OVWOf‘

Zﬂ(‘f‘(‘

'/'L..s webg,'-/»e VOVr‘ Secor\c:J /<e~7WOr-c‘ L‘#P-'//'-/Our-w.?bsi‘/'e.corv.

Your-Website

your +Lirmd /<c-~7\.«/or‘cJ
Your Websife

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 75



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Anchor (Pseudo Q) Document (Pseudo Label)

Tokyo travel | Japan - Lonely Planet
https://www.lonelyplanet.com/japan/tokyo ~

"Tokyo Trips"

Seattle travel | USA - Lonely Planet
https://www.lonelyplanet.com/usa/seattle ~

Tokyo travel | Japan - Lonely Planet
“See More” y | Jap ey
https://www.lonelyplanet.com/japan/tokyo ~

"Tokyo Trips"

v

Data

Selector

v

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020.
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Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Anchor (Pseudo Q) Document (Pseudo Label)

Tokyo travel | Japan - Lonely Planet

"Tokyo Trips"

https://www.lonelyplanet.com/japan/tokyo ~

Selector

"Tokyo Trips" Seattle travel | USA - Lonely Planet

« ” Tokyo travel | Japan - Lonely Planet Data
See More .
https://www.lonelyplanet.com/japan/tokyo ~

https://www.lonelyplanet.com/usa/seattle ~

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020.
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Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Anchor (Pseudo Q) Document (Pseudo Label)

Tokyo travel | Japan - Lonely Planet
https://www.lonelyplanet.com/japan/tokyo ~

« ” Tokyo travel | Japan - Lonely Planet Data
See More .
https://www.lonelyplanet.com/japan/tokyo ~

"Tokyo Trips"

Selector

Seattle travel | USA - Lonely Planet
https://www.lonelyplanet.com/usa/seattle ~ o Bad

"Tokyo Trips"

Weak
Supervision

Neural

Ranker

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 78



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Anchor (Pseudo Q) Document (Pseudo Label)

"Tokyo Trips" Tokyo travel | Japan - Lonely Planet

https://www.lonelyplanet.com/japan/tokyo ~

« ” Tokyo travel | Japan - Lonely Planet Data
See More .
https://www.lonelyplanet.com/japan/tokyo ~

Selector
n T Seattle travel | USA - Lonely Planet
Tokyo Trlps https://www.lonelyplanet.com/usa/seattle ~ > Bad
Weak
Supervision
Query Document
THE 10 BEST Hotels in Tokyo for 2020 Inference Neural
f(q) d) To kyo Hotels https://www.tripadvisor.com/HoteIs-gZQB184—To¢

Ranker

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 79



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Anchor (Pseudo Q) Document (Pseudo Label)

Tokyo travel | Japan - Lonely Planet
https://www.lonelyplanet.com/japan/tokyo ~

« ” Tokyo travel | Japan - Lonely Planet Data
See More .
https://www.lonelyplanet.com/japan/tokyo ~

"Tokyo Trips"

Selector
n T Seattle travel | USA - Lonely Planet
Tokyo Trlps https://www.lonelyplanet.com/usa/seattle ~ Bad
- Weak

Millions -

1 Supervision

2
Hundreds Query Document

THE 10 BEST Hotels in Tokyo for 2020 Inference Neural
f(q) d) To kyo H Otels https://www.tripadvisor.com/Hotels-g2981 84-To¢ Ra n ke r

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 80



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Any Text

Classifier
Anchor (Pseudo Q) Document (Pseudo Label)

Tokyo travel | Japan - Lonely Planet
https://www.lonelyplanet.com/japan/tokyo ~

« ” Tokyo travel | Japan - Lonely Planet Data
See More .
https://www.lonelyplanet.com/japan/tokyo ~

"Tokyo Trips"

Selector
n T Seattle travel | USA - Lonely Planet
Tokyo Trlps https://www.lonelyplanet.com/usa/seattle ~ Bad
- Weak
Millions -
1 Supervision
2
Hundreds Query Document

THE 10 BEST Hotels in Tokyo for 2020 _ Inference Neural
f(q) d) To kyo Hotels https://www.tripadvisor.com/Hotels-g298184-To

Ranker
[ Any Neu-IR Ranker |

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 81




Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Anchor (Pseudo Q) Document (Pseudo Label)

"Tokyo Trips" Tokyo travel | Japan - Lonely Planet

https://www.lonelyplanet.com/japan/tokyo ~

« ” Tokyo travel | Japan - Lonely Planet Data
See More .
https://www.lonelyplanet.com/japan/tokyo ~

Selector
n T Seattle travel | USA - Lonely Planet
Tokyo Trlps https://www.lonelyplanet.com/usa/seattle ~ > Bad
Weak
Supervision
Query Document
THE 10 BEST Hotels in Tokyo for 2020 Inference Neural
f(q) d) To kyo Hotels https://www.tripadvisor.com/HoteIs-gZQB184—To¢

Ranker

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 82



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)
* Policy gradient [Ronald J. Williams. 1992] is used

Anchor (Pseudo Q) Document (Pseudo Label)
“Action” ]

"Tokyo Trips" Tokyo travel | Japan - Lonely Planet » N Good
https://www.lonelyplanet.com/japan/tokyo ~

Tokyo travel | Japan - Lonely Planet Data

“See More” https://www.lonelyplanet.com/japan/tokyo S I t
' : : . elector

Seattle travel | USA - Lonely Planet
https://www.lonelyplanet.com/usa/seattle ~

g4 Bad

“Reward”

Weak
. . Supervision
Policy Gradient P
Query Document

Target
Valid THE 10 BEST Hotels in Tok Inference N |

yo for 2020 eura

f(q) d) TOkyo HOtels https://www.tripadvisor.com/Hotels-g298184-To

Ranker

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 83



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

0.34
0.33
0.32
0.31

0.3
0.29
0.28
0.27
0.26
0.25

® LeToR m MARCO No Anchor All Anchor ® RelnfoSelect m Bing Clicks

NDCG@20 NDCG@20

Conv-KNRM BERT
Same results on ClueWeb12 and Robust04

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 84



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

0.34
0.33
0.32 MARCO Labels are good for BERT
0.31 ¢

0.3
0.29
0.28
0.27
0.26
0.25

B LeToR = MARCO m No Anchor All Anchor ® RelnfoSelect m Bing Clicks

NDCG@20 NDCG@20

Conv-KNRM BERT
Same results on ClueWeb12 and Robust04

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 85



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

0.34 HLeToR = MARCO = No Anchor All Anchor m RelnfoSelect m Bing Clicks
0.33
0.32 Not sufficient to train e2e MARCO Labels are good for BERT
0.31 relevance embedding N
0.3 ’\
0.29
0.28
0.27
0.26
0.25
NDCG@20 NDCG@20
Conv-KNRM BERT

Same results on ClueWeb12 and Robust04

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 86



Challenges in Neural IR

RelnfoSelect
alleviates the

* Reinforcement data selection (ReinfoSelect) necessity of One

0.34
0.33
0.32
0.31

0.3
0.29
0.28
0.27
0.26
0.25

Millions Labels or
Search Log.

®LeToR = MARCO = No Anchor All Anchor ® RelnfoSelect mBing Cllcks

Bing Clicks are still better I I
Conv-KNRM BERT

Same results on ClueWeb12 and Robust04

NDCG@20 NDCG@20

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 87



Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Everything is helpful Got to be more
CEICCOUIELGIE  Selection Rate when Training from Scratch Se'TaC:'t"suf;’;fhe

100% ’_"._.\""_“;J
oo W\W

0 100 200 300 400 500 600 700 800
Training Step

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020.
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Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

Everything is helpful
CEICCOUELGEE  Selection Rate when Training from Scratch Rtk

last push!
U0 —
- W\W

0 100 200 300 400 500 600 700 800
Training Step

Warmed models only
EUSESJM Selection Rate when Ranker is Warmed Up
- L—A/\)/\__—-\/\_J.
0%
0 100 200 300 400 500 600 700 800

Training Step
Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020. 89
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Challenges in Neural IR

* Reinforcement data selection (ReinfoSelect)

e Some selected cases

 One row is TREC queries and the other is selected anchors.

e Canyou tell?

Query

Anchor

dieting

crash dieting

french lick resort and casino

tropicana casino & resort atlantic city

diabetes education

vegan menu for people with diabetes

income tax return online

personal income taxes

orange county convention center

orange county convention center

Zhang et al., Selective Weak Supervision for Neural Information Retrieval. WWW 2020.
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Challenges in Neural IR

* However Anchor-Document data is only available in the
Web domain

e E.g. TREC COVID contains only 50 labeled queries

Enterprise Extreme Cloud Personalized IR

Search Verticals Search Search Community
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Challenges in Neural IR

* However Anchor-Document data is only available in the
Web domain

e E.g. TREC COVID contains only 50 labeled queries

Can we generate some relevance labels for different ranking scenarios ?

Enterprise Extreme Cloud Personalized IR

Search Verticals Search Search Community
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Challenges in Neural IR

* MetaAdaptRank

Generate Relevance Labels Data Reweighting
| |
R
I : Source Domain I Target Domain Meta-Reweighted
' Relevance Labels r. >~ 1Synthetic Signals Synthetic Signals

| : R % b Weighted Loss R Y
I : / \ i I f \ Neural n / \
| \ - et I\ Ranker ZF Wi r;(6%) ] \ ’
I : . . / Inference I . / et . . /
I § T -
[ : Training
| Meta-forward Update @
| 3
I ( Optimal Weight

— [ ptmal Weights
| Sampling - ’ _, Neural |
: BE-- 5 (Bd;"|8d; )i | ( \—> Ranker »-.[Z — 1,8 (w))

....................... : t+1 Meta-backward Update

I . Target Domain Contrast Doc Pair Target Domain |~ (_wz Average Loss
o Documents I Few-shot Labels
e e e e e e e e - - - e e e e e e e e e e e e = e e e o e e = = = =

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020.
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* Generate relevance labels
* Neu-IR models are trained with relevance labels (g, d*, d™)
* Generate pseudo query with a Query Generator (QG)

Community QA
g Data

Question

I

[ Encoder H Decoder ]

Answer,, Question, I
\_/' Answer
Passage

Question Generation Training

Answer,, Question,
Answer,, Question,

Train generator with large-scale
corpus in general domain

~ Synthetic
Question Question

i Construction t

[ Encoder H Decoder ]

Generate query q for document
d of the target domain

Neural Passage
Retrieval Model

Neural IR
: Training
Target Corpus

Ma et al., Zero-shot Neural Retrieval via Domain-targeted Synthetic Query Generation. 2020.



Challenges in Neural IR

e Generate relevance labels

* Using this method to generate some queries
* The generated queries are too general
* These queries may be related with multi-documents
 Itis hard to select the negative documents for training

SyncSup: covid outbreak symp- | The importance of the timing of | Furthermore, the effect of infectious-
toms quarantine measures before symp- | ness prior to symptom onset com-
tom onset to prevent COVID-19 | bined with a significant proportion
outbreaks how quarantine-based | we evaluate two procedures: moni-
measures can prevent or suppress | toring individuals for symptoms on-
an outbreak ... set ...

Ma et al., Zero-shot Neural Retrieval via Domain-targeted Synthetic Query Generation. 2020.
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Challenges in Neural IR

* Generate better relevance labels

* Using two contrastive documents to generate a query
(ContrastQG)
Generate query g™ with QG for document d
Select two confused documents d* and d~ according to g*
Generate g with d* and d~, and synthesis relevance label (q, d*, d ™)

—— e ——— — —— — — — —— — — — —

—————————

/
. Negatives][?

Sampling Contrast Doc Pair

General Domain
Human Labels General Domain Training

— o —— —

Pairs |7

Sampling @_9/
Unlabeled Target Contrast Doc Pair ,'
\Domain Documents Target Domain Inference
N e e w w— w— wn wn e e w— w— w— — — -

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020.

96



e Generate better relevance labels
* Using two contrastive documents to generate a query

(ContrastQG)

Challenges in Neural IR

Synthetic Methods BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 ROUGE-L NIST@1 NIST@2 METEOR
SyncSup (Ma et al., 2020)  0.5672 0.4527 0.5928 0.3764 0.5745 5.8070 7.3315 0.3089
Reverse-CTSyncSup 0.3185 0.1807 0.3528 0.1088 0.3395 3.0076 3.3665 0.1610
CTSyncSup 0.5909 0.4627 0.6238 0.3844 0.5955 6.1282 7.6314 0.3191

Supervision Sources ClueWeb09-B (Web) Robust04 (News) TREC-COVID (BioMed)

NDCG@20 ERR@20 | NDCG@20 ERR@20 | NDCG@20 P@20

(a) MS MARCO (Nguyen et al., 2016) | 0.3205° 0.1690 0.4674* 0.1304* 0.8054* 0.8610*

(b)  Anchor (Zhang et al., 2020b) 0.3072 0.1609 0.4449 0.1223 0.7677 0.8260

(c)  SyncSup (Ma et al., 2020) 0.3036 0.1602 0.4685% 0.1311% 0.7867 0.8470

(d) CTSyncSup 0.3123 0.1764° 0.4769* 0.1293* 0.8006* 0.8610*

() MARCO + CTSyncSup 0.3214° 0.1739% | 0.4727* 0.1297* 0.8182% 0.8720%

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020.
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e Generate better relevance labels
* Using two contrastive documents to generate a query

(ContrastQG)

Challenges in Neural IR

Synthetic Query

Positive Document

Negative Document

L(T)

CTSyncSup: us military radars
in colombia
SyncSup: what is the pentagon

... One month ago, the Pentagon is-
sued an order to suspend operations
of the two radars that detect aircraft.
These radars operate in Colombia
as a result of that agreement. ...

provide for more funding and
retain more forces than the $1.5-
trillion five-year budget Cheney pre-
sented to Congress in January, Pen-
tagon officials say ...

2(1)

CTSyncSup: what percent of the
economy was increased in 1993
SyncSup: what is the economic
issue in peru

This letter explains the Peru-
vian Government’s economic policy.
The development of the economy in
1993 was in general much better. It
is estimated that the real GDP has
increased by 7 percent ...

... Only three economies - Guyana,
Argentina and Peru - grew by more
than than 5 per cent this year, with
Peru expanding by 11 per cent...

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020.



Challenges in Neural IR

* MetaAdaptRank

Generate Relevance Labels Data Reweighting
| |
R
I : Source Domain I Target Domain Meta-Reweighted
' Relevance Labels r. >~ 1Synthetic Signals Synthetic Signals

| : R % b Weighted Loss R Y
I : / \ i I f \ Neural n / \
| \ - et I\ Ranker ZF Wi r;(6%) ] \ ’
I : . . / Inference I . / et . . /
I § T -
[ : Training
| Meta-forward Update @
| 3
I ( Optimal Weight

— [ ptmal Weights
| Sampling - ’ _, Neural |
: BE-- 5 (Bd;"|8d; )i | ( \—> Ranker »-.[Z — 1,8 (w))

....................... : t+1 Meta-backward Update

I . Target Domain Contrast Doc Pair Target Domain |~ (_wz Average Loss
o Documents I Few-shot Labels
e e e e e e e e - - - e e e e e e e e e e e e = e e e o e e = = = =

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020.
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Challenges in Neural IR

* Reweight relevance labels
* Assign initial weights to relevance labels

Target Domain

A Synthetic Signals
()G ~~,

wusad
L J

*

Initial Weight

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020. 100



Challenges in Neural IR

* Reweight relevance labels
* Assign initial weights to relevance labels
* Meta-forward Update: Pseudo update Neu-IR models

Target Domain

e
o -

:, ‘.\ <o Syntl:etic{gnals
S

Weighted Loss

n
Z w;1;(6°)
j=1
@ JMeta—forward Update
r —_—
|

| Neural
I Ranker
'ét+1(w)l

—-_—

Neural
Ranker
et

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020. 101



* Reweight relevance labels

Challenges in Neural IR

* Assign initial weights to relevance labels
* Meta-forward Update: Pseudo update Neu-IR models
* Meta-backward Update: Calculate the actual weights

Target Domain

A Synthetic Signals
(@t =~

tan et

*

Initial Weight

Neural
Ranker

et

Weighted Loss

n
Z w;l';(8*)
j=1

Meta-forward Update

—_—

. | Neural

'r- m—p> Ranker ]

<~ i)

Target Domain §
Few-shot Labels

—-_—

zm lli(aHl(W)‘

i=1m

Average Loss

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020.

@

Optimal Weight

Meta-backward Update
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Challenges in Neural IR

* Reweight relevance labels
* Assign initial weights to relevance labels
* Meta-forward Update: Pseudo update Neu-IR models
* Meta-backward Update: Calculate the actual weights
* Train Neu-IR model with meta-reweighted synthetic signals

Target Domain Meta-Reweighted
e~ - Synthetlc Signals Synthetic Signals
" Weighted Loss " \
Neural n
= Ranker Z Y 1(9) .
ef =
. .
‘ JMeta -forward Update @
Initial Welght Optimal Weight
| Neural m
— Ranker PP > 1@ w)
J [ t+1(w)| i=1m Meta-backward Update

Target Domain §
Few-shot Labels

— Average Loss

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020. 103



Challenges in Neural IR

* Reweight relevance labels
* Performance

Methods (Supervision Sources) ClueWeb09-B (Web) Robust04 (News) TREC-COVID (BioMed)
NDCG@20 ERR@20 | NDCG@20 ERR@20 | NDCG@20 P@20

(a) RelnfoSelect (MS MARCO) 0.3294 0.1760 0.4756 0.1291 0.8229* 0.8780*

(b)  RelnfoSelect (Anchor) 0.3261 0.1669 0.4703 0.1313 0.7891 0.8430

(c) RelnfoSelect (CTSyncSup) 0.3243 0.1742 0.4816* 0.1334 0.8230% 0.8800*

(d) MetaAdaptRank (MS MARCO) 0.34531% 0.2018"+% | 0.4853* 0.1331 0.8354% 0.8730*

(¢) MetaAdaptRank (Anchor) 0.3374 0.1730 0.4797 0.1314 0.8045 0.8650

(f)’ ' MetaAdaptRank (CTSyncSup) 0.3416 0.1893% | 0.4916'# 0.1362"% | 0.8378% 0.8790*

(g) MetaAdaptRank (MARCO + CTSyncSup) | 0.34987+ 0.1926"°% | 0.4989'7%  0.1366'° | 0.84887F%  (.8910%%

Table 5: Ranking accuracy of RelnfoSelect and MetaAdaptRank using different supervision sources. Superscripts
t,1,b, 1,1, § indicate statistically significant improvements over (a)', (b)*, (c)’, (d)?, (e)* and (f)S.

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020. 104



Challenges in Neural IR

* Reweight relevance labels

* Performance
* MetaAdaptRank assigns more fine-grained weights to weak

supervision
1.0 0.25
— RelnfoSelect —— MetaAdaptRank
= 0.8 B 95% CI 0.20 95% CI
8 . § .
= 0.6 = 0.15;
E N
500 4 500,10 N‘V\\A/\/\(\,\/\fw
L (]
= 0.2 = 0.05
0.0 , k— 0.00{__ , .
0 200 400 600 800 1000 0 200 400 600 800 1000
Step Step
(a) RelnfoSelect. (b) MetaAdaptRank.

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020. 105



Challenges in Neural IR

* Data Synthesis with Data Reweighting
* Performance

Methods ClueWeb09-B (Web) Robust04 (News) TREC-COVID (BioMed)
NDCG@20 ERR@20 NDCG@20 ERR@20 | NDCG@20 P@20
BM25 (Yang et al., 2017) 0.2773 0.1426 0.4129 0.1117 0.6979 0.7670
SDM (Dai and Callan, 2019) 0.2774 0.1380 0.4269 0.1172 0.7030 0.7770
RankSVM (Dai and Callan, 2019) 0.289 n.a. 0.420 n.a. n.a. n.a.
RankSVM (OpenMatch) 0.2825 0.1476 0.4309 0.1173 0.6995 0.7570
Coor-Ascent (Dai and Callan, 2019) 0.295 n.a. 0.427 n.a. n.a. n.a.
Coor-Ascent (OpenMatch) 0.2969° 0.15817 0.43407 0.1171 0.7041 0.7770
Few-shot Supervision (Zhang et al., 2020b) | 0.2999 0.1631 0.4258 0.1163 n.a. n.a
Few-shot Supervision (Ours) 0.30331 0.1519 0.45721* 0.1234 0.77131* 0.8400"*
Bing User Click (Dai and Callan, 2019) 0.333 n.a. n.a. n.a. n.a. n.a.
MS MARCO (Nguyen et al., 2016) 0.32057#%  0.1690" 0.46741% 0.13047# | 0.80541# 0.86101#
Title Filter (MacAvaney et al., 2019b) 0.3021 0.1513 0.4379 0.1202 n.a. n.a.
Anchor (Zhang et al., 2020b) 0.30721 0.16097 0.44491* 0.12231* 0.7677"* 0.8260"*
RelnfoSelect (Zhang et al., 2020b) 0.326179%  0.1669"" 0.4703"# 0.13131% 0.78331* 0.8420"*
SyncSup (Ma et al., 2020) 0.3036' 0.16021 0.4685™ 0.13117% | 0.7867'* 0.8470*
CTSyncSup 0.31231 0.17641% 0.47691+ 0.12937" | 0.8006'+ 0.8610"
MetaAdaptRank 034167975 0.18937#%%% | 0.491619%5  0.136279% | 0.83781#%5  (.87901#%

Table 2: Ranking accuracy of MetaAdaptRank and baselines. t, I, b, i, £, § indicate statistically significant improve-
ments over SDMT, Coor-Ascent?, Few-shot Supervision®, MS MARCO¥, RelnfoSelect? and SyncSup®.

Sun et al., Meta Adaptive Neural Ranking with Contrastive Synthetic Supervision. 2020. 106
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* Introduction to IR

* Traditional IR Models

* Neural IR Models

* Neural Models in IR Systems
* Challenges in Neural IR

* Summary
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Summary

* Neu-IR models conducts semantic match to deal with
vocabulary mismatch problem

* Neu-IR models can be applied in both retrieval and
reranking stages

* Neu-IR models need well training
* Existing pretraining methods may be not suitable for IR
* Lots of few-shot ranking scenarios lack training data
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ummary

* OpenMatch Tookit
* https://github.com/thunlp/OpenMatch

MS MARCO Document Ranking Leaderboard

‘= README.md V4
date description team Open MatCh
2021/03/24 PROP_step. base + y top il Yingyan Li, Xinyu Ma, Jiafeng Guo, Ruging Zhang, Y
An Open-Source Package for Information Retrieval.
2021/04/01 PROP_step. base + y top v0.1) Yingyan Li, Xinyu Ma, Jiafeng Guo, Ruging Zhang, Y
1
& What's New
2021/01/02 Y PROP_step400K base (ensemble v0.1) Yingyan Li, Xinyu Ma, Jiafeng Guo, Ruging Zhang, Y
e Top Spot on TREC-COVID Challenge (May 2020, Round2)
2021/01/20 PROP_step400K base, long query + doc2query top100 (single) Yingyan Li, Xinyu Ma, Jiafeng Guo, Ruging Zhang, Y
The twin goals of the challenge are to evaluate search algorithms and systems for helping
2020/12/16 PROP._step400k base + doc2query top100 (single) Yingyan Li, Xinyu Ma - ICT, CAS scientists, clinicians, policy makers, and others manage the existing and rapidly growing
corpus of scientific literature related to COVID-19, and to discover methods that will assist with
2020/10/28 Bert-ranker (our implementation) Yingyan Li, Xinyu Ma - ICT, CAS managing scientific information in future global biomedical crises.
>> Reproduce Our Submit >> About COVID-19 Dataset >> Our Paper
2021/02/10 Y DML Xuanyu Zhang - Al-Lab, DXM
Overview
2021/03/12 ANCE MaxP XJTU
OpenMatch integrates excellent neural methods and technologies to provide a complete solution
2021/03/02 ANCE FirstP XJTU for deep text matching and understanding.
2020/11/18 PyTerrier + DPH Di from model, with stemming University of Glasgow Terrier Team 1/ Document Retrieval
Document Retrieval refers to extracting a set of related documents from large-scale document-
2021/03/30 ANCE+HDCT+BERT pretrained(ensemble) TJ-university level data based on user queries.
2020/11/13 ANCE + BERT Base MaxP THU-MSR

* Sparse Retrieval

OpenMatch provides some valuable experimental results for researchers
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Summary

 BioMedical Search

* We achieve the fist place in the TREC COVID round 2
* Our method is used in Microsoft Biomedical Search

B” Microsoft | Biomedical Search®®

p Covid 19 infection rates in young hypertensives >< ‘ Search ‘
Period 31results Sortby: Relevance v Expand All
Past Month
Covid-19 and the cardiovascular system: a comprehensive review. N
Past Year

Date range for results

1970/01/01 ‘E
2021/03/01 ‘\:‘
Author

Azevedo, Rafael Bellotti, Botelho, Bruna Gopp, Hollanda, Jodo Victor Gongalves de, et al

A retrospective cohort study included 126 patients with COVID-19 and pre-existent hypertension, and 125 age- and sex-matched patients with COVID-19 without
hypertension.... More

Peer-reviewed Journal of human hypertension @ 2020 Jul1

Modeling strict age-targeted mitigation strategies for COVID-19.
Chikina, Maria, Pegden, Wesley.

Some evidence has been presented that young children are less susceptible to infection from COVID-19 than adults; for example none of 234 tested children
under 10 tested... More

Peer-reviewed

PloSone

https://biomedsearch.microsoft.com/en-us/
https://blogs.microsoft.com/ai-for-business/biomedical-search/

Home
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